43 research outputs found

    Subharmonics and Aperiodicity in Hysteresis Loops

    Full text link
    We show that it is possible to have hysteretic behavior for magnets that does not form simple closed loops in steady state, but must cycle multiple times before returning to its initial state. We show this by studying the zero-temperature dynamics of the 3d Edwards Anderson spin glass. The specific multiple varies from system to system and is often quite large and increases with system size. The last result suggests that the magnetization could be aperiodic in the large system limit for some realizations of randomness. It should be possible to observe this phenomena in low-temperature experiments.Comment: 4 pages, 3 figure

    Reversal-Field Memory in the Hysteresis of Spin Glasses

    Full text link
    We report a novel singularity in the hysteresis of spin glasses, the reversal-field memory effect, which creates a non-analyticity in the magnetization curves at a particular point related to the history of the sample. The origin of the effect is due to the existence of a macroscopic number of "symmetric clusters" of spins associated with a local spin-reversal symmetry of the Hamiltonian. We use First Order Reversal Curve (FORC) diagrams to characterize the effect and compare to experimental results on thin magnetic films. We contrast our results on spin glasses to random magnets and show that the FORC technique is an effective "magnetic fingerprinting" tool.Comment: 4 pages, 6 figure

    Return to return point memory

    Get PDF
    We describe a new class of systems exhibiting return point memory (RPM) that are different from those discussed before in the context of ferromagnets. We show numerically that one dimensional random Ising antiferromagnets have RPM, when configurations evolve from a large field. However, RPM is violated when started from some stable configurations at finite field unlike in the ferromagnetic case. This implies that the standard approach to understanding ferromagnetic RPM systems will fail for this case. We also demonstrate RPM with a set of variables that keep track of spin flips at each site. Conventional RPM for the spin configuration is a projection of this result, suggesting that spin flip variables might be a more fundamental representation of the dynamics. We also present a mapping that embeds the antiferromagnetic chain in a two dimensional ferromagnetic model, and prove RPM for spin exchange dynamics in the interior of the chain with this mapping

    Magnetic hysteresis in Ising-like dipole-dipole model

    Full text link
    Using zero temperature Monte Carlo simulations we have studied the magnetic hysteresis in a three-dimensional Ising model with nearest neighbor exchange and dipolar interaction. The average magnetization of spins located inside a sphere on a cubic lattice is determined as a function of magnetic field varied periodically. The simulations have justified the appearance of hysteresis and allowed us to have a deeper insight into the series of metastable states developed during this process.Comment: REVTEX, 10 pages including 4 figure

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    Hysteretic Optimization

    Full text link
    We propose a new optimization method based on a demagnetization procedure well known in magnetism. We show how this procedure can be applied as a general tool to search for optimal solutions in any system where the configuration space is endowed with a suitable `distance'. We test the new algorithm on frustrated magnetic models and the traveling salesman problem. We find that the new method successfully competes with similar basic algorithms such as simulated annealing.Comment: 5 pages, 5 figure

    Magnetization Reversal and Nanoscopic Magnetic Phase Separation in Doped La1-xSrxCoO3

    Full text link
    The doped perovskite cobaltite La1-xSrxCoO3 (LSCO) has been advanced as a model system for studying intrinsic magnetic phase separation. We have employed a first-order reversal curve (FORC) method to probe the amount of irreversible switching in bulk polycrystalline LSCO as a function of Sr doping, field cooling procedure, and temperature. The value of the FORC distribution, rho, is used as a measure of the extent of irreversible switching. For x < 0.18, the small values of rho and its ridge-like distribution along local coercivity (Hc) and zero bias (Hb), are characteristic of non-interacting single domain particles. This is consistent with the formation of an array of isolated nanoscopic ferromagnetic clusters, as observed in previous work. For x >= 0.18, the much larger values of rho, the tilting of its distribution towards negative bias field, and the emergence of regions with negative rho, are consistent with increased long-range ferromagnetic ordering. The FORC distributions display little dependence on the cooling procedure. With increasing temperature, the fraction of irreversible switching determined from the FORC distribution follows closely the ferromagnetic phase fraction measured by La nuclear magnetic resonance. Our results furthermore demonstrate that the FORC method is a valuable first-pass characterization tool for magnetic phase separation.Comment: 30 pages, 8 figures, to appear in PR

    Exact Solution of Return Hysteresis Loops in One Dimensional Random Field Ising Model at Zero Temperature

    Full text link
    Minor hysteresis loops within the main loop are obtained analytically and exactly in the one-dimensional ferromagnetic random field Ising-model at zero temperature. Numerical simulations of the model show excellent agreement with the analytical results

    Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study

    Full text link
    We present a theoretical study of capillary condensation of fluids adsorbed in mesoporous disordered media. Combining mean-field density functional theory with a coarse-grained description in terms of a lattice-gas model allows us to investigate both the out-of-equilibrium (hysteresis) and the equilibrium behavior. We show that the main features of capillary condensation in disordered solids result from the appearance of a complex free-energy landscape with a large number of metastable states. We detail the numerical procedures for finding these states, and the presence or absence of transitions in the thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte

    Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal

    Full text link
    We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of its lateral domains. This technique is applied to elucidate the mechanism of the magnetization reversal of an exchange-biased Co/CoO bilayer. The reversal process above the blocking temperature is governed by uniaxial domain switching, while below the blocking temperature the reversal of magnetization for the trained sample takes place with substantial domain rotation
    corecore